If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2-4c-9=0
a = 1; b = -4; c = -9;
Δ = b2-4ac
Δ = -42-4·1·(-9)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{13}}{2*1}=\frac{4-2\sqrt{13}}{2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{13}}{2*1}=\frac{4+2\sqrt{13}}{2} $
| x+x-2+x-2+3=30 | | 3(3n+7)=84 | | 1/1/2x=2/1/4 | | 0=1/3x+2 | | -x+5x=9+31 | | 1-2/a=-1 | | 3^(3x+2)=9^(2x) | | 30=-5(6n+6} | | u÷4+5=7 | | (6÷w)+3=6 | | 4=5+k/4 | | -9+5n=-29 | | 5x-15=28 | | X-3/4x+-4.5-4=0 | | d+6−2=5 | | 4/5x(9x-20)-3x=4/5x-6 | | v=50+9v-2 | | -7w=105 | | N+8=92-n | | 17-q=11 | | v=50=9v-2 | | 3/5x+3=-6 | | -84-x=-7x+72 | | -4+6y=20 | | 20=y=12 | | -10/10+x=-3 | | -8-7x=-5 | | F(3)=-3x+15 | | 1/9(2x-4)=1/3(2x+4) | | 3(u+6)^2=84 | | 5k=-5 | | w-2/3=5/4 |